
T: 800-638-6316
www.mccabe.com

Page 1 of 11

Table of Contents

Introduction.....................................1

What is Coverage Analysis?2

The McCabe IQ Approach to

Coverage Analysis3

The Importance of
Coverage Analysis4

Where Coverage Analysis Fits
into your Existing Testing
Processes6

McCabe IQ Coverage Analysis and

Functional Testing................6

McCabe IQ Coverage Analysis and
Incremental Testing8

McCabe IQ Coverage Analysis and

Unit Level Testing9

White Paper

Improved Software Testing Using
McCabe IQ Coverage Analysis

With the increased pace of production schedules, the tremendous proliferation of

software design methodologies and programming languages, and the increased

size of software applications, software testing has evolved from a routine quality

assurance activity into a sizable and complex challenge in terms of

manageability and effectiveness. The major challenges to software testing

in today‘s business environment are:

• Efficiency. Is the test cycle too long? How can you ensure every test is a

good investment of time and money?

• Thoroughness. How can you tell when you are done testing? How can

you be reasonably sure the program is bug-free?

• Resource Management. Are testing resources strategically allocated,
focusing on the highest-risk elements of the software? Are the functionally-
central parts of the program receiving an acceptable level of testing?

Coverage analysis methodologies have been enlisted by many managers to
help. Coverage analysis determines what areas of source code, out of the
totality of source code needing to be tested, have and have not been ‘covered’
by any given set of tests. This information allows managers to better direct
testing to where it is most needed and to better assess various levels of

“testedness”.

All coverage analysis techniques, however, are not created equal. The use you
make of coverage analysis determines which, if any, of the challenges noted
above can be met. For example, effective approaches to coverage analysis use
a variety of coverage measurements (beyond simple line coverage), and
effective approaches combine coverage results with other critical information

(for example, metrics identifying particularly complex areas of the code under
test). Maximizing the potential of coverage analysis in these and other ways
using McCabe IQ is the topic of this paper.

The Purpose of this Paper
• To introduce coverage analysis as an increasingly important direction in the

management of software testing

• To describe how the unique coverage analysis techniques available in
McCabe IQ can add value to your test processes. Specifically, this paper
covers test assessment and improvement using McCabe IQ coverage analysis in
the areas of functional testing, incremental testing, and unit level testing.

T: 800-638-6316
www.mccabe.com

Page 2 of 11

The ”Percentage Lines of
Code‘ Fallacy

It seems reasonable that
coverage reports indicating the
percentage of lines of code
tested would be a good
indicator of ”testedness‘. If,
for example, a report indicates
that 99% of the lines have
been executed during testing,
it is reasonable to feel as
though the testing has been
thorough. There are several
reasons why this is a fallacy.

• What needs to be thoroughly
tested is the logic of the
program (the decisions it is
designed to make), and line
coverage percentages are no
indication of the percentage
of logic tested. For example,
because units of logic vary in
line length, 99% line
coverage might only be
covering 60% of the logic.

• Line coverage percentages
cannot account for
unexecutable lines, such as
blank lines and comment
lines. It is impossible,
therefore, to determine what
the percentages represent.

• Some languages can
execute multiple statements
on a single line. An extreme
example would be an entire
application that occupied
one line. Obviously, a line
coverage report would be
meaningless for such an
application. The ability to
perform branch and path
coverage reports is, for
these reasons, crucial to
successfully implementing
coverage analysis.

What is Coverage Analysis?

Coverage analysis is a means of tracking which areas of a program (most
commonly, for example, which lines of code) have and have not been tested by
a given round of tests. This is made possible by configuring the program to
store ‘trace data’ whenever a test is executed on it œ that is, to store data
detailing which areas of the program were used to perform the tested function
or operation. We say that the program has been “instrumented” to produce

‘trace data’.

There are two ways for an application to be instrumented: object insertion and
source code insertion. In the case of object insertion, an already-compiled
executable of the program under test is modified to store the trace data. In the

case of source code insertion, statements to store trace data are added to the

source code before it is compiled. Source code insertion has several advantages

over object insertion:

• More Measurement Potential. Programs instrumented using source code

insertion can track the coverage of more than just lines of code. The object
insertion method usually limits trace data to line coverage, which is the least
useful kind of coverage (read “The ‘Percentage Lines of Code‘ Fallacy“). The
source code insertion method allows you to track the coverage of the following

as well:

Branches. A branch is one possible outcome of a programmatic decision, such as an
IF-THEN statement. Branch coverage analysis ensures thorough testing of all the
possible logic in a program, units of logic (not lines of code) being the fundamental
building blocks of all programs.

Paths. A path is an executable sequence of programmatic decisions. Testing is tasked
with ensuring not only the accuracy of units of logic, but also the combinations of logic.
Toward this end, path coverage analysis ensures thorough testing of a program‘s
executable processes.

• More Flexibility. Object insertion methods notoriously produce
unmanageable amounts of trace data for large programs. Source code
insertion makes coverage analysis useful for large programs because it
allows more control over the amount of trace data stored during testing.

• More Applicability. Source code insertion works for any

compiler/platform, whereas object insertion only works for specific

compilers/platforms.

T: 800-638-6316
www.mccabe.com

Page 3 of 11

What is —Baseline Code
Analysis“?

Baseline code analysis is an
umbrella term for the
combined source code
analysis capabilities of
McCabe IQ, particularly
structural analysis and
metrical analysis.
Structural analysis makes a
program‘s architecture
maximally comprehensible by
identifying and visually
mapping the calling hierarchy
of all of the program‘s
modules. Metrical analysis
provides measurements of
critical code components
(such as the number of lines
or operands). Such
measurements can be useful
indicators of code quality
allowing you to highlight
highly complex and
unstructured modules in a
program.

Baseline code analysis is
useful throughout the
software production cycle,
not just for testing. To learn
more, please refer to
McCabe‘s white paper
entitled, —Baseline Code
Analysis with McCabe IQ.“

The McCabe IQ Approach to Coverage Analysis

The McCabe IQ approach to coverage analysis uses the more flexible and more
applicable source code insertion method of instrumenting programs, taking full
advantage of this method‘s benefits: scalability, compatibility with most
programming languages, and, most important, the ability to do branch and path

coverage reporting. As will be discussed in greater detail later in this paper,

branch and path coverage reporting is the cornerstone of coverage analysis with

McCabe IQ. In addition to this, several qualities make the McCabe IQ approach

unique:

Not Just Path Analysis: Cyclomatic Path Analysis!

The total number of testable paths of any given program is very large or as
many as 2 to the power of the number of decisions embedded in the code. For
a relatively small program that can make 50 decisions, for example, the total
number of testable paths could be as high as 250, or around

2,000,000,000,000,000.1

Finding a meaningful subset of paths to test is therefore imperative. The paths
identified by McCabe IQ for the sake of coverage analysis are not representative

of all of the possible paths in the program, but rather the minimum set of paths

required to pass through every decision at least once. Such “cyclomatic” path

analysis is the condition of possibility for path coverage techniques that are

useful and profitable.

Combines Coverage Analysis with Other Kinds of Source Code
Analysis

As mentioned, more value can be added to the test process if coverage
analysis can be combined with other kinds of source code analysis. The
McCabe IQ approach combines coverage analysis with:

• Metrical Analysis: Through its powerful baseline code analysis capabilities,

McCabe IQ provides instant access to metrics–measurements of various code

characteristics–that indicate the relative complexity and structuredness of a

program‘s various modules (read “What is ‘Baseline Code Analysis‘?“ in

1 The number of logical paths would never actually be this high (each decision would have
to have 49 branches passing processing to each of the other decisions). But the example
is meant to stress the impossibility of achieving 100% path coverage in most instances.

T: 800-638-6316
www.mccabe.com

Page 4 of 11

Objectives of Coverage
Analysis with McCabe IQ
Given the unique capabilities
supported by McCabe IQ, the
primary objectives of
coverage analysis using
McCabe IQ can be
summarized as follows:

• Assessing the
completeness of testing

• Pinpointing areas of the
program that need better
testing, and improving test
plans to address
such untested or poorly-
tested areas

• Verifying the testing of
changes since the last full
test cycle

• Targeting the modules
most at risk from defects
with more rigorous tests.

the sidebar area). Exceedingly complex or unstructured code segments can
be highlighted in the coverage reports, making it easy for testers to identify
those areas of the program most at risk from defects.

• Software Change Analysis: Whenever a program is modified, testing needs to

be focused on the modified code and the areas of the program that are
potentially affected by the modifications. McCabe IQ‘s software change
analysis capabilities can pinpoint both modified code and the subset of
modules that are potentially impacted by those modifications. Coverage
analysis can be focused on these two domains. This way time and resources
are not wasted testing areas of the program that do not need to be tested.

Makes Coverage Results Easy to Obtain and Understandable

With McCabe IQ, an instrumented version of the source code under test can be
obtained with a click of the mouse, as can sophisticated graphical displays (on-
screen ‘maps’) of

testable branches
and paths. When
you supply the
system with trace
data that was
generated from a
round of tests,
McCabe IQ can
highlight the
branches and paths
that were executed
in the branch and
path maps (see
Figure 1). This
makes coverage
results instantly
accessible and

understandable. Figure 1: McCabe IQ Coverage Analysis

The Importance of Coverage Analysis

Coverage analysis makes the test cycle more efficient. If you can instantly
identify untested paths and branches, you can streamline test plans to address
only untested parts of the program, short-cutting the quest for meaningful tests

and preventing such common problems as overtesting (spending

T: 800-638-6316
www.mccabe.com

Page 5 of 11

What Black Box Testing
Doesn‘t See

• Implicit (Undocumented)

Functionality

This is functionality that is not
described in the
requirements document but
that has been added in the
implementation phase be-
cause it was either not
included in the requirements,
or is needed to solve specific
implementation issues not
foreseen during requirements
analysis or de- sign.

• Functional Combinations
These are operations that
require a combination of
functions. A program may
need to do something when
input A is true and some-
thing else when input B is
true, but it could do some-
thing different if both input A
and input B are true. Design
specifications routinely dictate
the requirements of isolated
functions, but they rarely
address the requirements of
functional combinations. As a
result, operations that
combine functionality often
exhibit unexpected side
effects. Because black box
test methods follow from the
documented design specs,
they aren‘t looking for un-
documented functionality or
functional combinations.

excessive time on areas of the program that are at low risk for defects) and
redundant testing (testing the same functions over and over again).

Coverage analysis makes the whole test process more effective by making the
code, rather than the requirements specifications, the final reference point for
test efforts. When test plans are developed from the requirements
specifications, what is being tested is inevitably only a percentage of the actual
testable elements of any program. That is because such so-called “black box”
testing only tests what was intended in the design stage, not what you‘ve got

(that is, the code itself). For example, black box testing is prone to missing
implicit functionality and it is weak at testing functional combinations to
acceptable levels, both of which arise in the implementation stage of software
development, after the requirements document has been written (read “What
Black Box Testing Doesn‘t See“ in the sidebar area). With coverage analysis,
objective data about ‘what you‘ve got’ is the ultimate reference point for
focusing the testing effort and determining when the program has been
adequately tested.

In extreme cases, coverage analysis corresponds to so-called “white box”
testing, where the goal is to exhaustively test all internal units, branches and
paths of the code. But in practice, coverage analysis is more useful as a
support tool for black box testing efforts. Particularly, coupled with detailed
metrics (which identify the most at-risk-for-defects code segments) the goal of
coverage analysis is often not total coverage, but risk factoring and risk
management. You may not have time to execute tests that give you 100%
coverage of the entire program, but you can be sure that maximum coverage is
provided for the most complex and at-risk-for-defects segments of the code. We

call this “gray box” testing.

Coverage analysis is also important for improving communication channels
between QA/Test teams and Product Development (PD). For example, when
bugs are reported to PD, the precise unit of code causing the bug can be
reported as well. Likewise, when QA requires input of PD for the sake of
developing tests, coverage charts provide both parties a common point of
reference.

T: 800-638-6316
www.mccabe.com

Page 6 of 11

Where Coverage Analysis Fits into your Existing
Testing Processes

There are many different kinds of testing that serve a variety of different
purposes. Most kinds of testing, however, fall within one of the following three
general categories:

• Functional Testing. Tests the functionality of a new application based on

the requirements specifications. This is commonly called “black box” testing.

• Incremental Testing. Tests functionality that has been modified or
added since the last full test cycle. Verifies that unmodified functionality
was not broken by the modifications or additions (regression testing).

• Unit Level Testing. Tests small subsets of an application, focusing on
inputs, outputs, boundary conditions and logical sequences. This is commonly
called “white box” testing.

The remainder of this paper describes techniques for improving testing in these
three areas using McCabe IQ coverage analysis. Each of these models has a
different purpose and each presents different challenges that coverage analysis
techniques using McCabe IQ are uniquely suited to address. 2

McCabe IQ Coverage Analysis and Functional Testing
In functional testing, QA/Test groups derive functional tests from the program‘s

requirements specifications, and then execute the tests on the application to

verify that it performs as expected. The purpose of this type of testing is to

identify missing functionality, incorrectly implemented functionality, and

functional failures (i.e., bugs).3

Functional testing is often thought of as a straightforward process of deriving
tests from specifications, however there are several frequently overlooked
problems with this practice. These problems are outlined below.

2 This paper addresses coverage analysis techniques only for the most common test
models. Coverage analysis with McCabe IQ is also applicable to test models not addressed
in this white paper including, for example, stress/load testing and performance testing.

3 Any kind of testing that is focused on verifying functionality can be included in this
category as well, including integration testing, system testing, and user acceptance
testing.

T: 800-638-6316
www.mccabe.com

Page 7 of 11

Typical Sequence:
Functional Testing using
McCabe IQ Coverage
Analysis

The Challenges of Functional Testing

Testing Implicit Functionality and Functional Combinations.
Functional testing is good at making sure what was intended in the design

stage is indeed what you‘ve got. But it is particularly challenged with

ensuring the thoroughness of testing because, as mentioned earlier, tests

derived from the specifications document tend to miss implicit

(undocumented) functionality and problematic behaviors arising from

functional combinations.

Determining When to Stop. If an application has more than a few
requirements, the number of testable functional combinations becomes
enormous very quickly. The equation for testable functional combinations
is the same as the equation for possible decision sequences (i.e., paths).
That is, the number of testable functional combinations will be as many as

2 to the power of the number of functional requirements. Thus even a
program that had as few as 50 functional requirements would harbor over

1 billion functional combinations (250). It is obviously impossible to test all
the combinations.4 An effective, directed approach to functional
combination testing is therefore critical–an approach that makes it possible

to work out when enough testing has been completed.

How McCabe IQ Coverage Analysis Helps Meet the Challenges of
Functional Testing

Using McCabe IQ coverage analysis, you can:

• Pinpoint untested branches.

- Targeting untested branches targets most implicit as well as

explicit functionality.

• Identify modules most at risk for defects, and target them for more rigorous

tests using path coverage analysis.

- Using path coverage analysis in this way addresses all functionality

(implicit and explicit) as well as critical functional combinations in the most

at-risk areas of the program.

4 For a more in-depth study of the issues surrounding functional combination testing,
refer to Art of Software Testing by Glenford J. Myers.

T: 800-638-6316
www.mccabe.com

Page 8 of 11

• Track the accumulated “testedness” of branches and paths over any number

of rounds of testing.

• Use the cyclomatic paths identified by McCabe IQ as your index for the
“testedness” of the at-risk modules.

An acceptable level of testing can be determined based on the accumulated
coverage of branches and cyclomatic paths.

McCabe IQ Coverage Analysis and Incremental Testing
Incremental testing refers to testing that is done on revised versions of a
program in development. This kind of testing must verify that the changes
made to the code have fixed the reported defects, that added functionality
does what is required, and that unchanged functionality was not ‘broken’ by
the modifications or additions (regression testing).

The Challenges of Incremental Testing

Determining Which Tests to Run. Determining which tests to run to

verify program fixes is usually pretty straightforward–run the tests that

resulted in bugs on the prior test cycle. But the difficulty is in determining

the tests to run in order to verify that nothing previously functioning

correctly was broken when the program was ‘improved’. In other words,

testers are challenged with assessing the impact of the changes throughout

the program. Without a clear picture of the modules related to the changed
code, it is very difficult to determine what unchanged functionality to

target for regression tests and to develop a set of tests that ensures that
all implicated parts of the program (but only implicated parts of the
program!) are being tested.

Verifying that Modified Functionality has been Tested. Here the

difficulty lies in the fact that changes to a program often introduce new

implicit functionality. Verifying that all the modifications have been tested

(as opposed to just the advertised modified functionality) is impossible

without techniques over and above black box testing.

Verifying that New Functionality has been Tested. Testing new
functionality leads to the same challenges encountered when performing
full functional testing (see “The Challenges of Functional Testing” above)–
namely, verifying the completeness of testing, the testing of implicit
functionality, and the testing of functional combinations.

T: 800-638-6316
www.mccabe.com

Page 9 of 11

Typical Sequence:
Incremental Testing using
McCabe IQ Coverage
Analysis

How McCabe IQ Coverage Analysis Helps Meet the Challenges
of Incremental Testing

To meet the challenges of testing added functionality, McCabe IQ coverage
analysis helps in precisely the same ways described in “How McCabe IQ
Coverage Analysis Helps Meet the Challenges of Functional Testing” earlier in
this paper. Helping you meet the additional challenges of incremental testing,
McCabe IQ allows you to:

• Pinpoint the precise branches and modules of the program that have been

changed.

- Coverage analysis can be restricted to this domain, focusing the

testing effort where tests are needed.

• Isolate the areas of the program that are potentially affected by the changes

and additions.

- This allows you to focus regression testing where it is needed and

ignore those parts of the program that are in no way related to the

changed or added modules.

McCabe IQ Coverage Analysis and Unit Level Testing

Unit level testing is testing that is focused on small, isolated code segments
(“units”). A unit is variably defined, but a common classification is “the
smallest collection of code which can be usefully tested.“ The purpose of this
type of testing is to:

• Ensure that each unit does what it is programmed to do

• Locate boundary condition failures and hence unexpected side effects
• Verify that processes not directly represented by the program‘s outputs are

functioning correctly.

Unit level testing can be best understood by comparing it to functional testing.
When testers run functional tests, they rely on the resulting values/behaviors to

verify the accuracy of the code. But this can be deceptive, because the
outcome of a functional test only verifies that the decisions made by the
program produced the correct ‘answer’, not that it did it in the right way. For
example, suppose a subroutine is supposed to internally store certain data
values whenever a function is executed. Because the subroutine process is

transparent to the function‘s visible behavior, that unit‘s behavior could be

 wrong even when the function would, to all appearances, be operating correctly.

T: 800-638-6316
www.mccabe.com

Page 10 of 11

Why Unit Level Testing is
Important

In practice, unit level testing ranges from the ad hoc tests done by
programmers as they are writing code to systematic white box testing, where

 Unit level testing is part of a every unit must be tested and documented by a QA/Test group. In either

 complete test strategy. case, the tester begins with the goal of coverage, for it is the very purpose of

Because it is usually performed unit level testing to achieve the highest level of coverage possible.
early in the development

process, it is more cost-effective
at locating errors. The Challenges of Unit Level Testing

Deriving Tests. The greatest challenge of unit level testing is to identifying a
minimum set of unit level tests to run. In an ideal world, every possible path of

a program would be tested, accounting for all executable decisions in all
possible combinations, but this is impossible when one considers the enormous

number of potential paths embedded in any given program (as mentioned, 2 to
the power of the number of decisions). The challenge is to isolate a subset of
paths that provide coverage for all testable units, and to make that subset as
minimal and free of unit-level redundancies as possible.

How McCabe IQ Coverage Analysis Helps with Unit Level
Testing

McCabe IQ‘s path maps are precisely designed for making unit level coverage
manageable. The paths identified by McCabe IQ are not representative of all of
the possible paths in the program, but precisely the minimum set of paths
necessary to test all code units. Unit level testing with McCabe IQ usually aims
at making sure this subset of paths are covered–at least for the most at-risk-
for-defects parts of the program, if not for the program in its entirety.

Summary

• There are two major ways to implement coverage analysis. The more
commonly available object insertion technique is not scalable to larger
applications. The source code insertion technique used in McCabe IQ is more
controllable and scalable to large applications.

• There are different kinds of coverage you can track: line, branch and path.
Only the more sophisticated branch and path techniques provide useful
information.

• Combining coverage results with other information œ including detecting
changed code, complex or unstructured code, and code related to changes -
provides added value to coverage analysis efforts.

T: 800-638-6316
www.mccabe.com

Page 11 of 11

• McCabe IQ is the industry leader in source insertion instrumentation, and is

unique in its ability to integrate coverage analysis with a variety of other
forms of source code analysis

• Because of its overall approach, coverage analysis with McCabe IQ is
uniquely suited to meet the following challenges of functional, incremental,
and unit level testing:

- Testing functional combinations

- Ensuring all, not just explicit functionality, is tested
- Streamlining functional testing without sacrificing thoroughness (reducing

instances of overtesting and undertesting; focusing testing only where it is
needed)

- Making thorough regression testing manageable. McCabe IQ allows you to
identify areas of the program irrelevant for the purposes of regression
testing.

