

Complexity Analysis of Hostile Applets

Forensics: Using Path-Oriented Metric Analysis to Unravel Hostile Applet
Algorithm Patterns, Signatures, Similarities, Authors and Derivations

 Complexity Analysis of Hostile Applets

McCabe Software, Inc.

(800) 638-6316 URL- http://www.mccabe.com 41 Sharpe Drive Cranston, RI 02920

2

Abstract

This paper uses known hostile Java
applets as an example baseline that
could be analyzed and profiled using
path analysis to better understand the
algorithms, identify their patterns and
leverage the analysis to identify
signatures, similarities, authors and
derivations.

About Hostile Applets

The tool of choice for many hackers has
been mobile code. By enticing users to
a malicious web page that contains a
specially crafted Java applet or
application a skilled hacker can wreak
havoc.

On the internet there is a
comprehensive collection of hostile Java
applets. A hostile applet is any applet
which, when downloaded, attempts to
monopolize or exploit your system's
resources in an inappropriate manner.
Any applet which performs, or induces
you to perform, an action which you
would not otherwise care to perform,
should be regarded as hostile.

The power and complexity of the Java
language make it extremely likely that
security holes will continue to appear in
years to come. While the number and
nature of security holes in Java might be
frightening to some, they come as no
surprise to computer security
professionals and hackers. Any tool as
complex and as powerful as Java, being
a product of human ingenuity, is bound
to have numerous errors in both concept
and implementation.i

Applets must obey the security rules
that are put into place by the developer,
using the Java security model. This
security model is not infallible -
implementing the security model is
complicated and rules are not always
followed. Additionally, Java security can
be sidestepped and there is always the
danger the user’s computer, or company’s network, can be hijacked.ii The most serious malicious applets
find a way to circumvent Java’s security mechanisms and gain complete control of the host machine.
These attack applets depend on exploiting a vulnerability in a Java implementation. Other classes of

 Complexity Analysis of Hostile Applets

McCabe Software, Inc.

(800) 638-6316 URL- http://www.mccabe.com 41 Sharpe Drive Cranston, RI 02920

3

malicious applets may disturb the victim without circumventing Java’s security mechanisms by behaving
in an annoying or disruptive way that is within the behaviors permitted by the policy.

Java has always shown promise by being available anywhere, anytime, on any device and is nowadays
also integrating with new software inventions such as web services, XML1, mobile and embedded
applications. The amount of code developed using this multi-platform technology is huge and demands
high security requirements. Various tools and techniques exist that can help to produce robust, reliable
and secure software, however there are probably just as many methods for breaking in to code.

Why Hostile Applet Path Complexity Metrics Analysis?

Design, code, and most recently, requirements metrics have been successfully used for predicting fault-
prone modules.iiiThey can also be used to profile and uncover security exploitable bugs.

The Cyclomatic complexity of the control flow of the program can show the characteristic style of a
programmer and may suggest the manner in which the code was written. Programmers tend to show
repeating patterns in their programs. It is possible to identify ownership of a program by examining source
code metrics. Programmers are skillful with a limited set of constructs, mainly those that are well known
to them and that allow them to write programs faster and more reliably. It is unrealistic to assume that any
programmer can develop programs efficiently and correctly using an unfamiliar programming style. This
does not only apply to the structure of the programs, but also to the look and feel of it.iv Like naturally-
evolved human languages, programming languages allow developers to express certain constructs and
ideas in different ways. The differences in the way developers express their ideas can be captured in their
programming styles, which in turn can be used for author identification. In the context of programming
languages, it has been shown that capturing style in source code can help in determining authorship.v

McCabe metrics have been used for years in tools used for software forensics. One of the earliest set of
techniques for plagiarism detection in software is the attribute counting techniques which count the level
of a certain attribute contained within a piece of code. These systems use a number of metrics such as
Halstead’s software science metrics and McCabe’s Cyclomatic complexity.vi

Being cognizant of control and data flow paths within your codebase is crucial to uncover software
security vulnerabilities located off the beaten path. Security breaches are often a result of multiple
interactions within the software that, on the surface, appear innocent. Criminal attackers can disrupt a
system by exercising a specific sequence of interdependent decisions that produces unforeseen and
possibly disastrous consequences. Analyzing control flow paths and subtree structures is crucial for both
testers and developers to verify control flow integrity and uncover serious security flaws hiding in the
code. This analysis may also be used to find patterns, signatures and derivations of exploits. As part of a
secure, trustworthy software development process, identifying and exercising paths through the code to
ensure that program behavior is correct and expected can help find the nastiest of exploits. Cyclomatic
complexity and basis path analysis can be very useful in scrutinizing risky code structures and control
and data flows. It can also be used to develop profiles of known exploits.

Cyclomatic Complexity has been mentioned as a possible detection method for particularly nasty bugs. In
the paper “The Little Hybrid Web Worm that Could,” Billy Hoffman, Lead Researcher at SPI Dynamics,
and John Terrill, Co-founder of Enterprise Technology, had this to say: “One possible detection method is
to examine the Cyclomatic Complexity or McCabe Complexity of a piece of arbitrary JavaScript code. The
overall complexity diagram and number of closed loops should remain almost identical regardless of the
number of mutations performed on the code. This follows since our mutations change the syntax of the
code but not the underlying functionality then the complexity of that functionality should remain the same.”
The authors are investigating whether a complexity diagram alone is capable of uniquely identifying web
malware.”vii If Cyclomatic complexity can apply to self-modifying script mutations, it can also be used for
manual mutations coded by a hostile programmer, in any language. Control flow structure can be used to
characterize functionality regardless of syntax variations.

 Complexity Analysis of Hostile Applets

McCabe Software, Inc.

(800) 638-6316 URL- http://www.mccabe.com 41 Sharpe Drive Cranston, RI 02920

4

Many tools used to scan for security vulnerabilities operate based on the source code syntax which can
be tweaked to avert detection. Finding exploit derivations is not always easy with these tools. As others
have pointed out “When the tool failed to detect a bug, it was for one of two reasons: the absence of
security rules specifying the vulnerable function, or the presence of a bug in the static analysis tool.
Complex code is more likely to contain complicated code constructs and obscure format string functions,
resulting in lower detection rates.”viii McCabe metrics have also been used to estimate the degree of
protection achieved by a suite of software protection techniquesix

Sometimes source code from your codebase itself is tweaked by changing, or swapping out existing code
into a devious exploitable pattern. Once an Applet is written, it can be reused over and over again. Also,
for novice programmers, ‘slick’ features can be added quite easily using code written by someone else.

Most static analysis tools only offer textual information leaving the security analyst the remaining tasks of
understanding and patching the code. Visual information is believed to be helpful when fixing security
flaws and using dependence graphs for pattern matching security properties has also been suggested.x

For these reasons leveraging McCabe path-oriented analysis can help unravel hostile applet algorithmic
patterns, signatures, similarities, authors and derivations.

Examples of Hostile Applet Path Complexity Metrics Analysis

Here are some of the types of hostile applets analyzed for software complexity and used as an example
baseline for metric pattern match analysis.

DoMyWork.java

This Java applet makes you try to factor a moderately long integer by trial division, and it reports the
results back to its home. Clearly the same could be done for many, many other sorts of calculations.
While it performs no hostile actions per se, it does put your workstation to work for somebody else,
perhaps a business competitor or someone trying to crack codes. To create an applet that does other
sorts of work, you can replace the class GetFactor with another working class and adjust the classes
Report and ReportServerSocket accordingly.

Ungreatful.java

This Java Applet tries to convince you that your system is having a security problem and that you must
now login. If you do so, your user name and password are sent by the browser to the home of this applet.
In any event, the applet then proceeds to the applet proceeds with a denial-of-service attack against you.

Other hostile applets include:

 * Hijacker.java (A Java trojan horse that can hijack your compiler)
 * PublicEnemy.java (A Java trojan horse that directly hacks bytecode)
 * Attacker.java (Attacks Beginner.class and makes it deviant)
 * HoseMocha.java (A Java application that defends your classes from Mocha)
 * Mutator.java (A Java application that mutates and deletes itself after 5 runs)
 * Mutator1.java (Mutator.java updated for Java Version 1.1)

Following is a report of path metrics for the source code for some of these applets.

 Complexity Analysis of Hostile Applets

McCabe Software, Inc.

(800) 638-6316 URL- http://www.mccabe.com 41 Sharpe Drive Cranston, RI 02920

5

 Complexity Analysis of Hostile Applets

McCabe Software, Inc.

(800) 638-6316 URL- http://www.mccabe.com 41 Sharpe Drive Cranston, RI 02920

6

An interesting example of a distinct path complexity pattern is PublicEnemy.java. Given a target
directory, this Java application searches it and all of its subdirectories for Java class files. Once a class
file is located, PublicEnemy alters the contents of its access_flags for the class, its fields, and its
methods. The results are the following:

 1. The class becomes public.
 2. Any final fields and methods become non-final; any non-public fields and methods become public;

and all public fields and methods remain so. The following is the code’s global data control
flowgraph.

 Complexity Analysis of Hostile Applets

McCabe Software, Inc.

(800) 638-6316 URL- http://www.mccabe.com 41 Sharpe Drive Cranston, RI 02920

7

Hijacker.java is a Java Trojan that subverts Sun's javac by adding a hostile main class to the user's
CLASSPATH ahead of classes.zip. In this case the subverted compiler simply announces its presence
and appends the string "Hijacked!" to class files that it produces, but it could just as easily infect them
with a Java Platform virus. Again this is another example of a distinct control & data flow pattern.
Following is the code’s flowgraph.

 Complexity Analysis of Hostile Applets

McCabe Software, Inc.

(800) 638-6316 URL- http://www.mccabe.com 41 Sharpe Drive Cranston, RI 02920

8

1. McCabe IQ Source Code Metric Comparisons
Known Hostile Java Applets can be used as a baseline to be profiled. After the analysis is done and
saved using the McCabe IQ toolset, it is fairly trivial to search within your source code to find code
patterns and potential exploitable logic tweaks. Finding exact matches of patterns can be harder with
lower complexity values. In addition to using McCabe path-oriented diagnostics such as Cyclomatic,
essential, module design and global data complexity metrics, you may need to experiment using different
elements. Path-oriented analysis and profiles can be used to identify exploits, authors and derivations.
The analysis and profiles may also be leveraged to determine where in your codebase source code and
logic can potentially be tweaked to create an exploit.

 Complexity Analysis of Hostile Applets

McCabe Software, Inc.

(800) 638-6316 URL- http://www.mccabe.com 41 Sharpe Drive Cranston, RI 02920

9

 Complexity Analysis of Hostile Applets

McCabe Software, Inc.

(800) 638-6316 URL- http://www.mccabe.com 41 Sharpe Drive Cranston, RI 02920

10

2. Finding Control and Data Flow Similarities

A good example that can be used to illustrate a derivation can be found within the Hostile Applet
baseline. Two close matches within the Hostile Java Applet codebase itself exist. Class metrics for the
DoMyWork and Ungrateful Applets look similar and warrant further analysis.

Class Metric Reports for DoMyWork and Ungrateful.Applets:

 Complexity Analysis of Hostile Applets

McCabe Software, Inc.

(800) 638-6316 URL- http://www.mccabe.com 41 Sharpe Drive Cranston, RI 02920

11

Here are the flowgraphs and comparison report for the Ungreatful.run module within the Ungrateful
Applet and the DoMyWork.run module within the DoMyWork Applet. The path metrics and flowgraphs are
strikingly similar. Upon further analysis, the path report helps isolate were the rogue code was tweaked to
make a new exploit derivation.

 Complexity Analysis of Hostile Applets

McCabe Software, Inc.

(800) 638-6316 URL- http://www.mccabe.com 41 Sharpe Drive Cranston, RI 02920

12

 Complexity Analysis of Hostile Applets

McCabe Software, Inc.

(800) 638-6316 URL- http://www.mccabe.com 41 Sharpe Drive Cranston, RI 02920

13

Examples of Hostile Java Applet Algorithm Path Signatures

Following are flowgraphs depicting the path signatures for a number of hostile Java applets.

 Complexity Analysis of Hostile Applets

McCabe Software, Inc.

(800) 638-6316 URL- http://www.mccabe.com 41 Sharpe Drive Cranston, RI 02920

14

 Complexity Analysis of Hostile Applets

McCabe Software, Inc.

(800) 638-6316 URL- http://www.mccabe.com 41 Sharpe Drive Cranston, RI 02920

15

 Complexity Analysis of Hostile Applets

McCabe Software, Inc.

(800) 638-6316 URL- http://www.mccabe.com 41 Sharpe Drive Cranston, RI 02920

16

 Complexity Analysis of Hostile Applets

McCabe Software, Inc.

(800) 638-6316 URL- http://www.mccabe.com 41 Sharpe Drive Cranston, RI 02920

17

 Complexity Analysis of Hostile Applets

McCabe Software, Inc.

(800) 638-6316 URL- http://www.mccabe.com 41 Sharpe Drive Cranston, RI 02920

18

 Complexity Analysis of Hostile Applets

McCabe Software, Inc.

(800) 638-6316 URL- http://www.mccabe.com 41 Sharpe Drive Cranston, RI 02920

19

i Java Insecurity, Mark D. LaDue, 1996

ii Plain English: Risks of Java Applets And Microsoft ActiveX Controls, Jennifer M. Marek
GIAC Security Essentials Certification (VER 1.3), 4 March 2002, SANS Institute

iii “Comparing Design and Code Metrics for Software Quality Prediction” Yue Jiang, Bojan Cukic, Tim Menzies,
Nick Bartlow, The Lane Department of Computer Science and Electrical Engineering, WVU

iv "Authorship Analysis: Identifying The Author of a Program" Ivan Krsul Eugene H. Spafford, The COAST
Project - Department of Computer Sciences, Purdue University

v Identifying Source Code Authorship, Robert Lange, Jonathan Max-Sohmer, Maxim Shevertalov, Jay Kothari,
Spiros Mancoridis, Software Engineering Research Group, Department of Computer Science

vi "SOURCE CODE AUTHORSHIP ANALYSIS FOR SUPPORTING THE CYBERCRIME INVESTIGATION
PROCESS" Georgia Frantzeskou, Stefanos Gritzalis Laboratory of Information and Communication Systems
Security, Aegean University, Stephen G. MacDonell, School of Computer and Information Sciences Auckland
University of Technology

vii “ The Little Hybrid Web Worm that Could” Billy Hoffman, SPI Dynamics, John Terrill Co-founder Enterprise
Management Technology

viii “Measuring the Effect of Code Complexity on Static Analysis Results” James Walden, Adam Messer and Alex
Kuhl, Department of Computer Science Northern Kentucky University

ix “Realistic and Affordable Cyberware Opponents for the Information Warfare BattleSpace”
Martin R. Stytz, Ph.D., Sheila B. Banks, Ph.D., Michael J. Young, Ph.D., Air Force Research Laboratory
Wright-Patterson AFB, OH 45431

x “Pattern Matching Security Properties of Code using Dependence Graphs” John Wilander and Pia Fak, Dept. of
Computer and Information Science, Linkopings Universitet

