cCabe

SOFTWARE

Software Security Analysis:
Control Flow Security Analysis with McCabe 1Q

Applying a Path-based Method to Vulnerability Assessment of the Microsoft
SDL Banned Function Calls

Control Flow Security Analysis with McCabe 1Q

Introduction

When considering software security analysis, the primary concern is to ensure that the system is resistant
to malicious misuse. However, security vulnerabilities are also closely related to structural quality and
implementation flaws. As software becomes more complex, security flaws are more easily introduced and
more difficult to eliminate.

Comprehensive security analysis requires insight into the structure of the software code, to manage
complexity and track possible execution flows, ensuring that all paths of execution are valid and secure.
Therefore, in addition to identifying potentially vulnerable areas, security analysis tools must also be
cognizant of related control flow paths surrounding them.

McCabe IQ is a source code analysis tool with a strong focus on function call relationships and control
flow paths. While many tools commonly detect potentially insecure code patterns, function calls, or
expressions, discovery of the surrounding context is often left for the analyst to manually infer. McCabe
IQ mitigates this arduous task, taking into account the complexity and connectedness of components
when analyzing vulnerability.

One of the industry leading processes for secure software engineering is the Security Development
Lifecycle (SDL) developed by Microsoft. The SDL defines a workflow that incorporates security-related
activities throughout software development. McCabe 1Q’s capabilities are best suited to the activities
defined in the design, implementation, and verification phases of the SDL. Some of these activities
include attack surface analysis, static source code analysis, and testing. McCabe IQ is designed to
facilitate these efforts.

This application note discusses the example of performing vulnerability assessment in relation to the use
of certain exploitable functions in the C standard library. As part of the recommendations for the
implementation phase, the Microsoft SDL identifies a set of functions that, from real-world experience,
have been linked to many security bugs because of buffer overruns and invalid pointer access. SDL
practices suggest banning the use of these functions in favor of newer implementations that incorporate
better bounds checking and are easier to secure.

Searching source code for banned function calls will readily identify the vulnerable points, but the
exploitability of a given vulnerability is determined by whether it is reachable along an execution path from
parts of the system accessible to an attacker. Exploitable vulnerabilities call for special attention to design
remediation and adequate testing. The following sections describe activities that apply such practices
using McCabe 1Q.

Analyzing Use of Banned Functions with Attack Maps

Attack maps are control flow diagrams that identify a set of interconnected routines in a system, that
potentially participate in a malicious attack. An attack map is intended to show how call relationships and
a flow of execution can connect externally triggered attacks to critical areas of the system.

The main window of the McCabe IQ application consists of a structure chart called the battlemap. This
chart shows functions as boxes connected by lines indicating function call relationships. Attack maps
allow you to filter the battlemap chart in a way that focuses attention on routines that lie along attackable
execution flows.

This section covers the following topics:

Definitions

Mapping the Banned Functions with McCabe 1Q

Further Analysis Activities

Applying Code Coverage to Attackable Space 2

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Control Flow Security Analysis with McCabe 1Q

Definitions

An attack map connects two significant areas of interest: Attack Surface and Attack Target. The attack
surface is generally known as the subset of input space with which a malicious user can exploit the
system by giving it malformed data to trigger deviant behavior. One of the heuristics of securing software
is reducing the attack surface. That is, minimize the number of external interfaces that influence system
behavior. In a general sense, an attack surface encompasses code, interfaces, services, and protocols.
However, within the scope of source code analysis, the relevant attack surface consists of the areas of
code where the system obtains external input. For example, the analyst might focus on input routines that
accept data or read configuration files, environment variables, or registry entries that affect application
behavior. It is important to identify these entry points and review them to assess their correctness and
robustness. It is from this space where a malicious attack will originate.

The other area of equal interest is called the attack target, which is defined as the areas of the system
that can cause adverse critical impact if exploited. The banned functions fit this category. Misuse of these
APIs can cause significant consequences ranging from wasting system resources to program crashes
and security breaches. Given the attack surface and attack target, McCabe 1Q can analyze function call
relationships and direct attention to the routines that connect these two areas of concern.

Mapping the Banned Functions with McCabe 10

Two McCabe IQ features are integral to mapping the banned functions. They are as follows:
e Using the Class Editor to Identify Attack Surface and Attack Target
e Using the Exclude Feature to Narrow the Scope of Analysis

Using the Class Editor to Identify Attack Surface and Attack Target

To create an attack map with McCabe 1Q, the user must first identify functions in the attack surface and
attack target groups. This is done by using the McCabe IQ Class Editor, available from the View menu of
the main application window. For purposes of attack maps, classes are simply used as a way of grouping
functions together. Analyzing calls to banned functions in the standard C library is particularly easy
because the list of these functions is readily available, and is easily preconfigured in the McCabe IQ
Class Editor.

To identify functions in the attack surface, create a class called AttackSurface, and add to its contents the
routines from the input space that you wish to trace (see the screenshot below). For example, in a
network application, the recv() function, which receives data from a socket, may be of interest. With the
AttackSurface class highlighted from the class list, you can manually type in MODULE modulename in the
User Class File Contents box, or simply clicking a module box in the battlemap will add it to the current
class. You can add as many functions as you wish to the AttackSurface class, although the more
functions you add, the more inclusive (larger) the map will be. You can also use the NESTED classname
specification to add a group of functions as part of the AttackSurface class. The AttackTarget class in the
following paragraph of this example uses this technique.

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Control Flow Security Analysis with McCabe 1Q

M Class Editor 3
File Tools Current Class Help

Current Clazs: AttackSurface

Class List: Parser Class File Contents:

U ActackMap -
T Attackiurface

U ActackTarget

T MicrosoftiDL_BannedFunctions

T MicrosoftiDL_Bannedilloc

T MicrosoftiDL_BannedGets

T MicrosoftiDL_BannedIsBad

T Microsoftill_EannediuwConwv b

v i :
Ll i Biallinn Uszer Class File Contents:

Class List Order:
. . . MODULE
(®) Dominant Relationship | recy

O Alphabetic
Fielationship:

() Parert
(&) Mested

Load complete.

To configure a set of banned functions as the attack target, create a class called AttackTarget and add to
its contents the subset of banned functions you are interested in tracing (see the screenshot following). In
this example, the AttackTarget is configured to consist of the banned variants of strcpy(). Notice that the
syntax in the User Class File Contents box says NESTED MicrosoftSDL_BannedStrCpy. This is
because the prepopulated class list includes a class named MicrosoftSDL_BannedStrCpy, whose
contents consist of the banned strcpy() function names.

As with the attack surface, you can also specify individual functions using the MODULE modulename
specification. Again, you can add as many target functions as you wish to the AttackTarget class. The
screenshot below illustrates how you can specify NESTED classname to nest group definitions and
create aggregate hierarchies according to your needs. This allows flexibility for easily configuring the
function calls you wish to trace.

M Class Editor 3
File Tools Current Class Help
Current Clags: AttackT arget

Class List: Parser Class File Contents:

U AttackMap ~
U Attackiurface

T MicrozoftiDL_BamnedFunctions

T MicrosoftiDL_Bammeddlloc

T MicrosoftiDl_BannedGets

T MicrozoftiDL_FBannedIsBad

T MicrosoftiDL BannedNunCony hs

LCapture Box Selection

Clase List Dider User Class File Contents:

MNESTED MicrosoftiDL_Banned3trCpy

(&) Dominarnt Relationship
(O Alphabetic
Fielationzhip:

) Parent
(&) Nested

Load complete.

Finally, you must define a class called AttackMap that nests the AttackSurface and AttackTarget classes
(see the following screenshot). The AttackMap class comprises both the AttackSurface and AttackTarget
groups. Note that you are not required to use the specific class names AttackMap, AttackSurface, and
AttackTarget. What is important is that you have identified and created two groups of functions to

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Control Flow Security Analysis with McCabe 1Q

represent attack surface and attack target, and a third group (attack map) to tie the two together using the
NESTED specification. For example, you may have several sets of three (surface, target, map) groups that
you wish to maintain, in order to map different attack models.

M Ciass Editor X
File Tools Current Class Help
Current Class: AttackMap

Class List: Parser Class File Contents:

T Attackiurface

U AttackTarget

T MicrozoftiDL_BamnedFunctions

T MicrosoftiDL_Bannedilloc

T MicroszoftiDL_BannedGets

T MicrozoftiDL_FBannedIsBad

U MicrosoftiDL_BannedNuwConv b

LCapture Box Selection
Clags List Order:

(&) Dominarnt Relationship
() Alphabetic
Fielationzhip:

) Parent

(&) Nested

User Class File Contents:

NESTED Attackiurface
NESTED AttackTarget

Load complete.

Using the Exclude Feature to Narrow the Scope of Analysis

The second step in attack map modeling is to use McCabe 1Q’s Advanced Exclude feature (available
from the View menu of the main application window) to filter out functions that do not participate in the
call relationships between attack surface and attack target. The Advanced Exclude dialog offers a
selection of exclusion commands that can be applied to the battlemap chart. From the class definitions
previously created, the fundamental command relevant to producing an attack map is ARTICULATE
CLASS AttackMap. Since the AttackMap class nests both the AttackSurface and AttackTarget groups,
this command will articulate on the functions related to the two sets.

When you apply the commands by clicking on the Exclude button, the resulting chart will consist only of
functions in the attack surface group, functions in the attack target group, and functions that have call
relationships with those groups. All other functions will be filtered from view.

If you have defined multiple functions in the attack surface and/or attack target it may be simpler to show
them as a group in the chart. You can do this by adding the commands BIND AttackSurface and
BIND AttackTarget to the exclude dialog. This command collapses functions of a specified class into
one box on the chart.

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Control Flow Security Analysis with McCabe 1Q

I Advanced Exclude g|
® Root ARTICULATE CLASS AttackMap
OE > EIND Attack3urface
= BEIND AttackTarget
() Stub
) Omit
() Omiit Tree
() fttach To
() Articulate
Code Only
Capture Box Selection] Superimpase Exclude
[Exclude EI[Restore][Clgar][Load ...][Save..][Cloze][Help...]

Following is an example of how the chart may appear after applying the three exclude commands. As a
reminder, the default red, yellow, and green color coding of the boxes represent high, medium, and low
complexity functions, respectively. The two grey boxes represent the AttackSurface and AttackTarget
groups.

M McCabe Battlemap - tftpd32

Flle Miew Project Metrics Quality Reengineering Testing Help

FCM STD | evgl4.00]/vg[10.00] Cade Oy [OFF]

Thus, after excluding based on your specified classes, the view shows only a subset of the functions that
make up the application. Specifically, it shows only the functions that participate in connecting
AttackSurface and AttackTarget. In this example, it shows the call relationships connecting recv() and
banned strcpy().

This filtering helps you focus the effort and scope of analysis on functions and paths that are potentially
exercised in the execution flow of an attack. The control flows within and between these functions
deserve special attention, and must be verified and tested adequately.

When the battlemap chart shows a filtered subset of functions in the application, the other features of

McCabe IQ abide by the same filtering. For example, generating a basic module metrics report will show

metrics for only the same functions that are visible on the chart, instead of reporting on all the functions in
6

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Control Flow Security Analysis with McCabe 1Q

the application.

I Module Metrics Q@@

[Pont.. I[Save b][Save Text .][Save Data...][Apply To Chart][Cloze][Help...]

Fage 1 04401710 -
Module Metrics

Program: tftpd3z

Module Name Mod # wiG)] ew(() iw(G) # Lines Line #
DecodConnecthata 175 54 24 3l 272 308
TftpiendFile 175 37 24 23 161 691
TftpRecwFile 179 23 16 18 121 g59
StartTfcpTransfer &9 22 4 18 104 9587
tftpd thread:TEtpielect 2581 9 4 2 22 279
nak 444 [4 27 110
tftpd thread:TEtpExtendFileNane 377 3 1 1 13 1687
tftpd thread:TftplreateMD5File 284 2 1 2 35 188
FeportNewTr £ 176 1 1 1 22 644
tftpd thread:TEtpiysError 375 1 1 1 a 264
Total: 158 a0 28 786
Lireracge: 15.80 &.00 9.80 78.60

Fows in Report: 10

This keeps the user focused on analyzing the prioritized subset. The usual McCabe analysis features can
be applied to further scrutinize only these critical routines. You can analyze module flowgraphs and
source code listings for the functions of concern. Various reports and metrics provided by the tool help
determine which functions have a high risk, and gauge the testing effort based on function complexity.

Since these functions lie along the attackable execution flow, software developers might consider
remediation of risky functions through refactoring. For example, from the report above, we see that four of
the functions in the attack map have a cyclomatic complexity metric [shown under the v(G) column] over
20. Complete basis path testing for these functions would require numerous test cases. A suggestion to
consider would be to refactor and break down the complex functions into smaller functions.
Hypothetically, only a portion of those smaller functions would remain in the attack path of execution,
effectively reducing the complexity of the attackable space.

Less complexity also facilitates testing, requiring fewer test cases to achieve complete basis path
coverage.

Further Analysis Activities

After applying attack maps to prioritize the functions under security review, there are a number of other
detailed analysis activities that McCabe 1Q facilitates. Although attack maps can focus the scope of
analysis to a subset of functions, it is necessary to investigate those functions in detail, to assure
structural quality and validate all paths of execution. Following are some suggested activities:

e Articulating Other Calls to the Attack Targets

e Examining Individual Root Modules and Associated Subtrees

e Investigating Control Flow Paths in a Function

e Using the Data Dictionary to Investigate Specific Control Flow Paths

Articulating Other Calls to the Attack Targets

While attack maps focus on call relationships that are reachable from the attack surface, it is worth
making note of other possible ways to invoke the vulnerable attack targets. The Advanced Exclude

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Control Flow Security Analysis with McCabe 1Q

feature can articulate on a single function or a single class (group of functions), to show the call tree into
the specified item. This often leads to finding subtle defects that, although not directly reachable from an
attack surface, may still cause undesired consequences to application behavior.

Examining Individual Root Modules and Associated Subtrees

Having focused the scope of analysis to a priority subset of functions, it is important to investigate each
root level function and examine the integration paths that reach the attack target. The McCabe 1Q
battlemap is a structure chart showing a hierarchical call tree. Root level modules are functions to which
the tool found no direct calls. Some applications have a single root module representing the main entry
point of the program. However, other systems, like event driven applications, may have multiple entry
points. We recommend analyzing each call tree, to be cognizant of the integration paths that include the
attack target.

To focus analysis on an individual call tree, add the ROOT command in the Advanced Exclude dialog. This
will show only the functions in a call tree rooted at the specified function. For example, following is the
chart after adding the command ROOT StartTftpTransfer and reapplying the exclusion:

10 McCabe Battlemap - tftpd32

Eile Wiew Project Metrics Quality Reengineeting Testing Help

]
Start TftpTra
nsfer

e
@Class: Atac
kSurface

Ec
{@BClass:Atac
kTarget

< 4
FCM STD eval4.00]qg[10.00] Code Only [OFF] Exclude complete.

As noted before, other battlemap features abide by the currently displayed functions. Generating a
program metrics report would show the program design complexity and integration complexity for the
subset of modules with the single current root.

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Control Flow Security Analysis with McCabe 1Q

Ml Program Metrics E]@@

[Prnt.. \[Save As..][Save Text.][Cloge][Help...]

Program Metrics

Program : tftpd3z 04/02/10
Root module of program: StartTEtpTransfer
Design Complexity 30: a3

Integration Complexity 31 (# of subtrees): 89

Recall from basic McCabe 1Q concepts that the program integration complexity represents the number of
linearly independent paths through an entire program’s design. In this example report, the integration
complexity of the subset of functions rooted at StartTftpTransfer is 89. This means there are 89 unique
paths to fully exercise a set of all linearly independent paths through the functions shown in the chart.
McCabe IQ can highlight the control flow paths and show the sequence of decision outcomes needed to
exercise them.

To see the linearly independent integration paths through the functions in the current chart, use the
Integration Level Test Plan feature (available under Testing->Test Plan menu of the main application
window), and generate design subtrees. If you set the output type to Graph, you can use the Subtree
Number scroll bar to step through the various subtrees in the chart. As you do so, the chart will highlight
certain lines connecting the boxes. This represents the calls exercised for the selected call tree
sequence. In the context of attack maps, special interest is called for on specific integration subtrees that
highlight the attack target, especially those that highlight calls to both the attack target and attack surface.

M McCabe Battlemap - tftpd32 EWEWE

File Wiew Project Metrics Quality Reengineering Testing Help

0
Stant TipTra
nsfer

e
[BClass Aac
kSurface

-

M Integration Level Test Plan
Ecw |
Class:At; |

I‘?‘i’ar;;S Jac Detal Level: O Cyclomatic () Design
Qutput Type: (®) Graph O Text
[] Show Only Untested Subtrees Stub at SAFE
Subtree Number £ >

47

<
FCN [5TD | evald.00]/vg[10.00] Cade Orly [OFF]

Subtree H47 of 89,

If you set the output type to Text when generating the design subtrees, McCabe 1Q will open a window
9

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Control Flow Security Analysis with McCabe 1Q

with a text report showing the details of the function call flow, listing the calling and called modules plus
the test conditions needed to exercise the subtree. For example, subtree 47 highlighted in the chart
above shows details like the following in the textual report (highlights added to show where recv() and
strcpy() participate in the call tree). Details on the notation for calls to and returns from other functions are
explained in the McCabe IQ user manuals.

Ml Design Subtrees for program tftpd32 rooted at StartTftpTransfer g@@
[Frint] [Save Az] [Save Text] [Cloze] [Help]
GUBTREE #47: e

StartTEtpTransfer > [SetThreadPriority] < StartTftpTransfer > [socket]
StarcTErpTransfer > [TEtpEind] < StarcTErpTransfer > [connect]
startTEtpTransfer > DecodConnectData » [ntohs] < DecodConnectData > [LOG]
DecodConnectData > [LOG] < DecodConmectData » nak < DecodConnectData
StartTEtpTransfer > [getsockname] < StartTfcpTransfer > [htnnsl]
StarcTErpTransfer > [LOG] < StartTLtpTransfer > ReportNewTrt
[LogToMonitor] < ReportNewTrf > [ntohs] < ReportlewTrf » [latrcpyd]
ReportNewTrf > [SendMsgRecquest] < ReportMewTrf € StartTftpTransfer
TfrpSendFile > tftpd thread:Tftpielect > [select] « tftpd_thread:Tftpielect
TicpSendFile > [rsow] « TLtpSendFile > cfrpd thread: TEtpSysError
[LastErrorText] < tftpd thread:TftpiysError > [GetlastError]

tftpd thread:TftpSysError > [LOG] < tftpd thread:TftpSysError > nak
tftpd thread:TftpSysError < TftpSendFile < StartTftpTransfer
[LogToMonicor] < StartTfrpTransfer > [GetCurrentThreadId]
StartTEtpTransfer > [LogToMonitor] < StartTEtpTransfer > [SetEvent]
StartTEtpTransfer > [Sleep] < StartTftpTransfer > [_endthread]
StartTEtpTransfer

L A A T A A SR R Y

[END-TO-END TEST CONDITION LIST FOR SUETREE #47:

StartTEtpTransfer 998(2): pTftp->tw.bPermanentThread ==> FALSE

StartTEtpTransfer 1003(9): !'tThreads[TH _TFTP].gRunning ==> FALSE

StartTEtpTransfer 1016(l6): (pTEtp->r.skt=socket(2,2,0))==(30CKET) (~0) ==> FALSE

StarcTErpTransfer 1021(23): TLtpEind|pTEtp-»r.skt,siectings.nTftplowPort,s5ectings.nTEcpHighPort) ! =0 ==> FALSE
StartTEtpTransfer 1027(30): connect(pTEtp—>r.skt, (structsockaddr®)&pTEtp-+h. from,sizeofpTELtp-+h. from) =0 ==> FALSE
DecodConnectData 334(5): opcode!=01 ==+ TRUE

DecodConnectData 334(6): opcode!=02 ==> TRUE

nak 116(1): pTErp->r.skc==(S0CKET) (-0} ==> TRUE

StartTEtpTransfer 1035(39): (Roc=DecodComnectData(pTEtp)) !=CNX_FAILED ==> TRUE

dtartTEtpTransfer 1046(49): Rc ==r CHX_SENDFILE

TftpSendFile 636(1): (!!({pTftp!={{void#*)0))}) ==> TRIE

Titp3endFile 689(6): pTftp->m.bInit ==> FALSE

TEtpSendFile 713(12): pTEtp-rc.nTimelut>0 ==+ FALSE

TitpSendFile 718(15): pTEtp-rc.nCount>0 ==+ TRUE

Tftp3endFile 720(17): ((pTftp-rc.nCount+pTEtp->s.Extralindize)< (pTftp->c.nLastBlock0fFile)) ==> FAL3E

TitpiendFile 720(20): pTEtp-rc.nlastToSend<=(((pTEtp->c.nCount+pTEtp->2.Extralingize) < (pTEtp->c.nlastElock0fFile)) # (pTECp->C. Y
tftpd thread:TftpSelect 286(4): _ i<((fd set¥) (sreadfds))->fd count ==> TRUE

tftpd thread:Tftpielect 280(6): ((fd_set*) (sreadfds))->£d_array[_ i]==(pTftp-rr.skt) ==> TRUE

tftpd thread:Tftpielect 286(10): _ i==((fd_set*) (sreadfds)|->fd_count ==> TRUE

tftpd thread:TftplSelect Z86(11): ([ifd set#)(sreadfds))->fd count<éd ==> FALSE

tftpd thread:TftpSelect 286(16): 0 == FALSE

tftpd thread:TftpSelect 289(19): pTftp-c.nTimelut ==> <DEFAULT:>
tftpd_thread:Tftpielect 298(28): Ro=={-1) ==> FALSE
TitpSendFile 752(58): Tftp3elect(pTftp) ==> TRUE

TEtpSendFile 756(6l): Re<=0 ==> TRUE

nak 116(1): pTEtp->r.skt==(S0CKET) (~0) ==> TRUE
StartTEtpTransfer 1066(73): bSuccess ==» FAL5E
StarcTErpTransfer 1067 (77): tThreads[TH TFTP].gRwming ==> FALSE
StartTEtpTransfer 1072(85): pTEtp->r.skt!=(30CEET) (~0) ==> FALZE
StartTEtpTransfer 1074(90): pTftp->r.hFile!s=((HANDLE) (LONG_PTR)-1}) ==+ FALSE
StartTEtpTransfer 10758(95): pTEtp->tm.bPermanentThread ==> FALSE
StartTEtpTransfer 1051(938): pTLtp->tm.bPermanentThread ==> TRUE
StartTLtpTransfer 1081(99): tThreads[TH TFTP].gRunning ==> TRUE
StartTEtpTransfer 998(2): pTftp->tw.bPermanentThread ==> FALSE
dtartTEtpTransfer 1003(9): !'tThreads[TH _TFTP].gRunning ==> TRUE

Investigating Control Flow Paths in a Function

You can right-click on a box on the battlemap chart, or on a function name in a report to bring up a
context menu that allows you to drill down into the details of that function. Two items of particular interest
are flowgraphs and test paths. If you select “Graph/Listing...”, McCabe IQ will open a dual pane window
showing the implementation details for the selected routine. On the left pane is a graphical representation
of a routine’s control flow. The right pane shows the source code for that routine. Node numbers on the
graph are also displayed on the right (shown in blue in the screenshot below), so you can see which lines
of code correspond to the nodes on the graph. You can right-click on a node number in the source code
and highlight the corresponding node on the flowgraph. Conversely, you can also right-click a node
number on the flowgraph and highlight the corresponding line of code in the source code pane. The
screenshot below shows an example flowgraph and source listing for a given function.

10

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Control Flow Security Analysis with McCabe 1Q

B Graph/Listing for ‘tftpd_thread:TftpSelect’

[Zoomin |[ZoomOut | [Pirt. |[SaveAs. [SaveTest.. |[Close |[Help.. |Graph(37)% < >
Magrnification Level 2
< % Page 10of 3 litpd_thiead: ThpSelect
Progran: tftpd3? BaF0S710 Armotated Source Listing
tftpd thread:TftpSelect (KR) Superimposed
Crelomatic 57 TBop Swite ™ _ Program i tfrpds2 04/05/10
Essgntlgl 4 T Main Edges __ File @ Eryvcfrpdizy_services\tfrpd thread.c
esign

Language: instc
Module Module
Letter Hane

Gtart MNum of
viG) eviG) iv(G) Line Lines

KR tfrtpd thread: Tftpielect 9 4 2 279 22
279 FRO static int Tftp3elect (struct LL TftpInfo *pTLtp)
z80 {
28l int Rc:
282 fd_set readfds;
283 struct timewal sTimeout;
284
285 ER1 FD_ZERO (& readfds):
286 FRZ FR3 FR4 FRS FROo FRT ERS FRS FRLO ERLL KR1Z FR13 KR14d ER1S KR1o ER17
FD_SET (pTftp-»r.skt, ereadfds):
287
286 ER1G sTimeout. tv_usec = 0 ;
289 FR19 switch (pTEtp-»c.nTimelur)
290 {
291 ERZ0 case 0 : sTimeout.tv sec = {pTftp-»s.duTimeout+3) /
282 FRZ1 break :
293 ERZZ case 1 : sTimeout.twv_sec = (pTEtp-»s.dwTimeout+l) /
294 FR23 break;
295 ERZzZ4 default : sTimeout.tw_sec = pTEtp-»s.dwTimeout ;
296 ERZS }
297 ERZ26% ERZ7 Rc = selecc(l, sreadfds, WULL, NULL, &sTimeout) ;@
298 ER2G ER259% KR30
if (Rc == S0CKET ERROR) return Tftp3ysError (pTitp, EUNDE
299 ER31 KR3Z return Rc; f/ TRUE if something is ready
300 ER33 } // Titpielect
<

Another key item from the context menu is the “Test Paths...” item. Selecting this option opens a similar
window, but instead of showing the source code on the right, it shows a set of conditions for a specific
path through the function. Furthermore, the flowgraph on the left highlights the path that the conditions
will exercise. The screenshot below shows the test paths window for the same function shown in the
previous screenshot. Note that it is showing the first of nine linearly independent paths. The scroll bar

under the Zoom In and Zoom Out buttons allows you to step through all nine paths identified by McCabe
Q.

Ml Test Paths for tftpd_thread: TftpSelect’ g@]g|
[Zoar [n][Zoarn Dut] [Print...][Save As..][Save Text...][Claze][Help...]Graph (43)%: < >
M agrification Level: 2
F3 % Page 1af 9 titpd_thread: ThpSelect
Program: tEtpdi? AR/ Cyclonatic Test Path L (of 9): 012 3 49 10 15 16 17 18 19 24 25 2
tftpd thread:TftpSelect (KR) Superimposed 30 33
Crclomatic jest Path (1 of 3) Moroed dto™ — 286(4): _ i<((fd_set*| (sreadfds))-»fd_count ==> FALSE
59591&1;1 4 — 2861 10): _ i=={(fd_set*) (sreadfds))->fd count == FALIE
s 286(16): O ==» FALSE
2891 12): pTftp-rc.nTimelut ==> <DEFAULT>
208 2B): Ro==(-1) ==> TRIE
_1z
13
_20
rz1
< ?

With the flowgraph, annotated source code listing, and test path details, you can carry out a thorough
analysis of each function in the attack map, to ensure that the control flow paths shown are valid,

consistent with requirements, and secure.

11

McCabe Software, Inc.

(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Control Flow Security Analysis with McCabe 1Q

Using the Data Dictionary to Investigate Specific Control Flow Paths

The Data Dictionary feature of McCabe 1Q (available from the Reengineering->Data menu of the main
application window) is another technique to do more detailed investigation of where in the application
code banned functions are being used. The data dictionary can search data elements and function calls,
and identify the paths within a function that entail those calls.

Continuing with the above example, you can configure a data set that consists of calls to the banned
strcpy() functions. From the Data Dictionary window, click on the “Data Set...” button, and search for
module elements named “*strcpy*”. In the Data Set dialog, click the “Apply” button. This will find (from the

set of functions currently visible in the chart) all instances where banned strcpy() variants are invoked,
and apply it as the current specified data set.

M Specify Data Set E|
File Marne: |" |
Module Mame: | |
Element Name: |"strcp_l,'" |
Element Type: | |
Declaration Type: [Global [Parameter [Local Module

[Appw [Reset |[Save.. [List.. || Clear |[Close |[Help.. |

Once this data set is applied, you can highlight which functions in the battlemap chart contain the data set
elements. To do this, select “Highlight->Data Set” from the menu on the Data Dictionary window. The
battlemap chart will show the functions that directly invoke the matching elements. Following is what the
chart may look like. Notice that all the highlighted functions call directly into the attack target group,
which, in this example, represents the banned strcpy() functions.

12

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Control Flow Security Analysis with McCabe 1Q

10 McCabe Battlemap - tfitpd32

File Wiew Project Metrics Quality Reengineering Testing Help

1]
StartTitpTra
nsfer
176
ReportMewTrf
B
(@BClass:Atac
kSurface

175
DecodConnect
Data

—
a7
titpd_thread
TitpEstend F

ile Mame

EE
[@Class:Atac
ki Target

< >
FCM STD evgl4.00)4g[10.00] Code Orly [OFF]

You can also look at individual control flow graphs for the currently specified data set by selecting
“Reports->Specified->Graph/Listing...” from the menu on the Data Dictionary window. This brings up a
window with a flowgraph and annotated source listing of each of the functions in the current specified
data set. This is similar to the flowgraph and source code window described earlier, except that this
flowgraph will highlight path flows through the function on which the specified elements lie. Furthermore,
the source listing on the right pane will show the source code for the function, highlighting the lines that
contain the specified data set elements.

In the example below, the specified data graph/listing window shows function nak() calling Istrcpy(),
highlighted on line 128. The control flow graph is shown on the left pane. This function has a cyclomatic
complexity metric of 6, with a specified data complexity of 2. This means that there are 6 linearly
independent paths through this function. Of those 6 paths, 2 independent paths have relationships to a
call to strcpy(). At minimum, there should be tests that exercise those 2 paths.

13

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Control Flow Security Analysis with McCabe 1Q

M Specified Data Graphs for ‘tfipd32* E@@
[Zoomln [ZoomQuw | [Bint. J[Savess. J[SaveTew. |[Close][Help.. |Graph(35)% < >
Magnification Lewel 2
< > Page 3of 4 nak
Program: tftpd3z saf02/10 Arnotated $ource Listing ~
nak (KK) Superimposed
e VTR Sie™ — Progrem : tfpdaz 04/02/10
52:?3“124 al’lain Edges __ File : Ezhvtftpd32y_services\tftpd_thread.c
Specifi —3 Language: inste
] Hodule Module Start Num of
—g Letter Name v(G) ev(G) iw(G) Line Lines
| & e i T
5 K nak 6 4 3 1o 27
F12
1 110 KO int nak (struct LL_TftpInfo *pTftp, int error)
. 111 {
11z struct tEtphdr *tp;
113 int length;:
114 SLIUCT EBLIMSY *pe;’
115
116 ¥K1 KK2 if (pTfrp->r.skt == INVALID_SOCKET] return 0;
117
118 ¥K3 KK4 tp = (struct tftphdr ¥)pTftp->b.buf;
119 FKS KK tp->th_opcode = htons((u_short)TFTP_ERROR) :
S 120 FK7 KK tp->th_code = htons((u shortjerror):
1zl FK9 KK10 KEL1 for (pe = errmsgs; pe->e_code >= 0; peH)
1zz EK1z if (pe-»e_code == error)
123 FK13 break;
124 ¥K14 KK15 FK16 if (pe-re_code < 0) {
125 ¥K17 KK1& pe-»e_msq = strerror (error - 100);
126 EK19 tp->th_code = EUNDEF; /% set "undef' errorcode %/
127 }
128 | FK20 KK21* KK2Z
| lstrcpy(tp->th msg, pe-»e msg);:
128 EK23 KEz4 length = lstrlen(pe->e_msg):
130 el tp->th msg[length] = '\0';
131 el length += 57
132 #if ([defined DEBUG || defined DEB_TEST)
133 BinDump (pTEtp->b.buf, length, "HAK:"):
134 #endif
135 FK27 KF2§ FK29 KK30 FK31
return send(pTEtp->r.skt, pTEtp->b.buf, length, 0) != length ? -1 : 0
138 FK3Z } #4 nak
v
£ 2

To find the conditions necessary to exercise the 2 specified data paths, select “Reports->Specified->Test
Paths...” from the menu on the Data Dictionary window. This will open a Specified Data Test Paths
window that allows you to step through each of the specified data test paths for each of the modules in
the currently specified data set. The left pane shows the control flow graph of the function, highlighting
the specified data test path. The right pane shows the conditions needed to exercise that path. The
following two screenshots show the 2 specified data paths and conditions from the above example.

B Specified Data Test Path Graphs EJElEl
[Zoom [n][Zoom Dut] [Frint...][Save ds..][Save Teut.][Close][Help...]Graph [39)%: < >

M agnification Level 2

£ » Page8of10 nak

Program: tftpd32 04702710 Specified Data Test Path 1 (of 2): 0 1 2 32

nak (KK Superimposed + 116§ 1j: pTEtp->r.skt=={30CKET) (~0) ==> TRUE

fpecified Data Test Path (1 of 2)lpward Flows
lomatic & Loop Exits
Essential 4 71 Plain Edges
Design 3 2
Speci fi

e e e

mo

g g
MR
gy

*

MR
O

_29 _20
32

@
-y

14

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Control Flow Security Analysis with McCabe 1Q

M Specified Data Test Path Graphs g@@

[Zoom [n][Zoorn Dut] [Frrint...][Save As..][Save Text.][Close][Help...]Graph [39)3%: 4 >
M agnification Level 2
< 3 Page 3of10 nak

Program: tetpds2 RO Specified Data Test Fath 2 (of 2: 01 3456 78 9 10 12 13 15 16 20 21 22 23
[

Superimposed 24 25 26 27 28 30 31 32
gpeclfled Data Test Path (2 of lelpwa!:d Flows

yclomatm 0 Loop Exits __ + 1167 L): pTftp->r.skt==[30CKET) {~0) ==> FALSE
Essent. 1 Plain Edges __ 1214 10): pe-re_coder=0 ==> TRUE
g:z:g.t‘:mu Data 2 L"""- 122{ 12): pe-we_code==error == TRIE

1241 16): pe-re_code<0 ==> FALZE
1351 28): send(pTftp->r.skt,pTftp->b.buf,length,0) '=length ==> FAL3E

H‘HI@IHI-IIGNIO!IﬁIW

s _14
T1i1
a5

17
rie
19

29 20

Applying Code Coverage to Attackable Space

After identifying and examining details of the functions in the attack map, it is important to know how
thoroughly these critical functions are tested. One of the major benefits of McCabe IQ is that it allows you
to perform both structural complexity analysis and coverage analysis with one integrated tool. McCabe 1Q
includes features to instrument your code, and report on the paths that have been exercised as a result of
running your tests. The following procedures are described:

e Using McCabe IQ Source Code Instrumentation

e Reporting on Path coverage

e Exercising Remaining Untested Paths

Using McCabe IQ Source Code Instrumentation

McCabe IQ can export an instrumented copy of the source code it has analyzed. Instrumented code is a
copy of the original source code, augmented with counters to track coverage on code as it is executed.
The user can then build the instrumented copy of the source code, to produce an instrumented
application that collects coverage data. If you are using the Microsoft Visual Studio IDE, McCabe 1Q
provides a Visual Studio Add-in that facilitates this process.

When an instrumented version of the application or component (.exe, .dll, etc.) is built, you can deploy it
in place of the normal binary and run your security tests. The application should run in a logically
equivalent behavior to a normal build, except that the instrumented component information as to which
parts of the code are being exercised. This data is collected in a trace output file that will be imported
back into the McCabe 1Q application, to see the results of execution.

Reporting on Path Coverage

To incorporate coverage information into the McCabe 1Q analysis, select “Testing->Testing Data-
>Import...” from the McCabe 1Q Battlemap menu. Then import the trace file that corresponds to the
currently loaded program. When the trace data has been loaded, select “View->Switch To Coverage
Mode”, to see the coverage information on the chart.

In coverage mode, the red, yellow, and green coloring scheme represents untested, partially tested, and
fully tested functions, respectively, based on the currently selected coverage technique. The boxes can 15

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Control Flow Security Analysis with McCabe 1Q

also show the percentage of coverage, and the lines showing call relationships are also highlighted
according to coverage.

McCabe IQ supports various coverage measurement practices including statement, branch, boolean, and
basis path coverage techniques. Basis path coverage provides the most thorough level of testing, and is
highly recommended for critical security applications, especially for the most critical code components of
these applications. Basis path coverage is based on linearly independent paths, which is the hallmark
feature of McCabe 1Q. By default, the coverage indicators (colors and percentage numbers) used in the
chart are calculated based on basis path coverage.

If you have the chart pared down to show only the functions in the attack map, coverage mode will allow
you to investigate in detail, which functions and call trees have been exercised. This effectively measures
how well the tests have exercised the code in the attackable space. The chart below shows an example
with partial coverage of the attack tree rooted at StartTftpTransfer. Many functions are only partially
tested, and some lines representing call relationships have not been exercised. Since these functions lie
along an attackable call tree, your tests should be designed to maximize coverage in these areas. Ideally
you would want to see green boxes with all call lines highlighted, for the attack map in coverage mode.

M0 McCabe Battlemap - tftpd32 EI@"E

Eile Wiew Project [Metrics Quality Reenginesring Testing Help

649 a%
Stant TitpTra
nsfer

178 2% 174 4%
Titp SendFile Titp RecwFile

| ——

281 1%
tftpd_thread
TitpSelect

—

175 3%
DecodConnect
Jiata

\

a7 3
titpd_thread
Tftp Evtend F
ilabiame

11

[@Claz=:Atac
kTarget

£ >
FCH coy Path Coverage Code Only [OFF]

Exercising Remaining Untested Paths

For a given function, McCabe IQ can analyze the current coverage levels and suggest specific control
flow paths to exercise in order to achieve complete basis path coverage. Using the Test Path Editor
feature, you can list the untested paths of a specified function. Simply right-click on a function in a chart
and select “Test Path Editor...” In the Test Path Editor window, check the option to “Show Only Untested

Paths”.
16

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

Control Flow Security Analysis with McCabe 1Q

B Test Path Editor For ‘tfipd_thread: TftpExtendFileName®

Module: ttpd_thread: TitpE stendFileM ame
w[G]= 3 ac=1 # User Pathe= 0 # Usger Paths Tested=0

Shaw Only Untested Paths
Test? Ind? User-Specified Paths

Add .. Basiz Completion Paths:
Path 1: 01 234585829
Path 3: 01 2345678951011

< b4

Show Dependencies ..]l Sheow Test Paths |[Close][Help...

If you click the “Show Test Paths ..."” button, the allowing you to scroll through each of the suggested
paths and the corresponding sequence conditions needed to exercise the path. Adding tests that fulfill the

conditions for each of the untested paths will achieve the coverage required for complete basis path
testing.

B Untested User-Specified Test Paths for *tftpd_thread: TftpExtendFileName®

Zoomln [ZeomOw] [Prnt..][Saveds.][SaveTest. |[Close][Help. |Graph(45P% b3 3
Magnification Level: 3
£ % Page 3of 3 titpd_thread: TitpExtendFileM ame
o 8 CTER safuzfin Untested Basis Completion Test Path 2 (of 2): 01 2345678 9 10 11 12
t::g’d“::“u adE" sctendEiLet - et 175(5): nlength>0 ==» TRUE
Bd_thread: ... ExtendEileName (KM) uperimposec 175(6): szExtNeme[nLength-1]!='y}' ==> TRUE
Untested Basis Completion Test Path (2 of 2) Upward Flows
Cyclomatic 32 Loop Exits
Essential 1 N Plain Edges
Design 1 T
1=
z
3=
4
5
&
g
10
11
12
< 2 >

This application note highlights how McCabe 1Q’s cyclomatic path oriented technologies offer a unique
and invaluable insight into security analysis. The example demonstrated how a control flow based

approach is essential to assessing the exploitability of banned function usage and measuring the scope
of attention required to remediate any security flaws.

McCabe IQ’s security analysis combines principles from structural analysis and quality analysis in an
integrated tool, to help you make your software more secure.

For more information, or to schedule a demonstration of McCabe IQ, contact us at 800-638-6316 (in the
US) or 401-572-3100. Visit us online at www.mccabe.com.

17

McCabe Software, Inc.
(800) 638-6316 e URL- http://www.mccabe.com e 41 Sharpe Drive e Cranston, Rl 02920

