

Exhibit []

Quality Level Agreement
1. OVERVIEW

The parties hereto have entered, or are entering, into a Software Development Agreement (.Development Agreement.). This Exhibit [__] is a quality level agreement (“Quality Level Agreement,” or “QLA”), which describes: (i) Contractor’s obligation to meet certain Quality Levels with respect to the software being developed; and (ii) certain remedies for Customer in the event of breach by Contractor of such commitments. These obligations and remedies are an addition to any obligations and remedies stated in the Development Agreement. By execution by both parties below, this QLA is hereby incorporated into, and made a part of, the Development Agreement.

Contractor Signature

Customer Signature

(Print Name)

(Print Name)

Title

Title

Date

Date

2. SCOPE AND LIMITATIONS

Software developed for Customer must be developed in accordance with specific quality levels in order to promote necessary reliability, maintainability, interoperability, time to market, and other desired attributes.

2.1. The Customer may establish and manage separate QLAs with third parties to assure quality of other components and processes not managed by Contractor.

2.2. This Agreement applies to all software that Contractor may develop, or is developed under Contractor’s control, for Customer under the Development Agreement unless an explicit exception is made in writing signed by both parties.

2.3. This Agreement does not apply to software that is not developed under Contractor’s direct control.

3. DEFINITIONS/DESCRIPTIONS

For purposes of clarity, a definition/description of certain terms is provided below. Any terms not defined herein shall have the meanings ascribed to them in the Development Agreement or those meanings generally ascribed to them in standard industry practice.

Software Test Execution Monitoring

3.1 Cyclomatic Complexity- A measure of the amount of logic in a code module, which is best defined as a Method, Procedure, Control, Section or Paragraph depending upon the programming language. If Cyclomatic Complexity is excessively high, it leads to impenetrable code, which is higher risk due to difficulty in comprehension and testing. The commonly used threshold is 10. When the Cyclomatic complexity of a given module exceeds 10, the likelihood of the code being unreliable is higher. A high Cyclomatic Complexity indicates decreased quality in the code resulting in increased defects that become costly to fix.

3.2 Branch Coverage- A measure of how many of the branches or decisions in a module have been executed during testing. McCabe IQ by default measures Expanded Branch Coverage, which extends the traditional measure by ensuring the logical conditions within a decision statement are tested, for those languages where the compiler implements short-circuiting. McCabe IQ can also measure branch coverage without consideration of short circuiting. If the Branch Coverage is <95% for new code or 75% for code under maintenance, then the test scripts require review and enhancement.

3.3 Basis Path Coverage- A measure of how many of the basis (Cyclomatic) paths in a module have been executed. Path Coverage indicates how much logic in the code is covered or not covered. If the Basis Path Coverage is <90% for new code or 70% for code under maintenance, then the test scripts require review and enhancement.

3.4 Boolean or MC/DC Coverage- A technique used to establish that each condition within a decision is shown by execution to independently and correctly affect the outcome of the decision. This technique is more often used in safety critical systems and projects that require conformance to the FAA guideline DO-178B. When used, the requirement is for 100% Coverage, which in part explains the very high cost of such systems.

3.5 Test Coverage- monitoring which sections of source code were executed during testing in order to measure test case effectiveness and execution. Line, Branch, Boolean and Basis Path are all test coverage techniques that vary in stringency. Basis Path and Boolean being the most thorough..

3.6 Instrumented Code- source code that is copy of a projects code with counters inserted after decision points and calls, which is compiled to run test cases against. The instrumented code generates information to track of which sections of code have been executed during testing. Source code that is not instrumented for testing purposes will be considered overrided.

4. ONGOING DEVELOPMENT PROCESS, DOCUMENTATION, REPORTING, AND METRICS GENERATION

4.1 Managing the Deliverables- The contract sections that cover deliverables need to be far more sophisticated than simply specifying the delivery of a working component/sub-system. These sections need to make extensive reference to quality metrics to cover all possible types of component/system being delivered.

Metrics are used to determine a wide range of characteristics in the delivered software, covering code size, average complexity, line/branch/path coverage achieved during testing, OO metrics that provide an indication of reuse or possible need for refactoring, etc.

For each type of software deliverable, the appropriate metrics should be selected from the list provided in Section 3.
 4.2 Quality Plan- As part of the development, a quality plan will be implemented which will monitor the quality of the code as it is produced. It is in this area that code metrics will be used to ensure the code produced is not simply fit for purpose on the release date, but is constructed in such a manner as to facilitate change over the coming years.

Contractor shall test, monitor, and report on the test coverage attained, and use reasonable efforts to remove any and all security exploits as detailed in the Mitre Common Weakness Enumeration database (cwe.mitre.com).
4.3 Collection of Metrics- The McCabe IQ product comes into play once source code has been produced. The code can be scanned prior to test as part of a code review process. Once the reviews are complete and any changes or refactoring has taken place, the test cycle can be commenced. Once the desired level of test coverage is reached, the code is ready for integration testing and subsequent build and release. At that point a snapshot of the metrics and the coverage achieved can be taken and sent to the Project Management Team for analysis using the management reporting functionality within the McCabe IQ products.

If code subsequently has to be reworked due to logic or performance shortcomings, then these snapshots provide the Project Management Team an understanding of how the code is being developed, and if the development processes stated in the contract are being followed.

The metrics provided by the contractor at each delivery, not only give an insight into the probable project end, but also provide an insight into the probable maintenance profile that may be developing in the project. This last factor is often ignored or simply not analyzed, such that when the delivered product moves into a conventional maintenance phase, the costs associated with that maintenance are excessive.

4.4. Management Dashboard Reports- there are reports created by the McCabe IQ Management toolset that analyze source code, test coverage results, and results of any software tests associated with the classes or modules in the project.

During the Testing phase, when following a test plan we monitor not just Requirements Coverage, which forms the basis of the Test Plan, but also the test coverage, to ensure that we have tested all, or at least near all, of the executable code as part of our test plan. The Branch and Path coverage including MC/DC for DO-178B. Metrics are monitored and retained with the release as evidence of the effectiveness of the overall Test Plan.

4.5. Software Build- this is the collection and compilation of application components into an executable version of the product. For pre-release versions of the product, it is identified by a build number, rather than by a release number. Contractor will make the results of the build, including status, errors, and warnings, available to Customer

4.6. Code Rules- these are a set of conventions that are defined to codify team coding standards. Violations of code rules may alert developers to potential code defects. Such violations are reported as part of the source code analysis results in the Management Dashboard.

4.7. Regular metric reporting-Contractor agrees to perform software analysis on builds, releases or deliverables a regular basis, and will run all test cases against an instrumented form of the source code in the form of a unit, integration, Fuzz, GUI, functional or regression test.

4.8. Documentation- Contractor agrees to document and provide reasons why source code or object was manually excluded from test coverage or from metrics reporting. .

4.9. Reporting-Contractor will provide to Customer a written report on a mutually agreed upon periodic schedule. Contractor will provide the following as part of the report:

1) Any discovered issues regarded by Contractor as significant and appropriate resolution plans

2) A summary of actions taken or planned to remedy any failure by Contractor to meet any of the Quality Levels set forth in this Exhibit

3) Progress against plans sent by Contractor to Customer as part of section 6.1 “Ongoing Quality Measurement and Notification.”

5. DELIVERY AND ACCEPTANCE

Unless a specific exception is made in writing and signed by both parties, all software deliverables specified in the Development Agreement submitted for Customer acceptance will be required to comply with the Quality Levels set forth below (in addition to any other standards for acceptance set forth in the Development Agreement) prior to acceptance by Customer.

6. QUALITY LEVELS

6.1. Ongoing Quality Measurement and Notification

For each of the metrics specified in the “Threshold for Ongoing Notification” column in Table 1 below, Contractor will immediately notify Customer if any metric is not in compliance with daily threshold for more than 4 consecutive days. Contractor will immediately notify Customer if Contractor is unable to successfully create a build for more than 4 consecutive days. This notice will include (i) a reasonable explanation for the delay and (ii) a good faith schedule and plan for correction. This notice will not constitute an excuse or waiver of performance.

6.2. Final Quality Levels

Contractor will develop the software so that, for each software deliverable submitted for acceptance, all of the applicable quantitative measurements set forth in the first column of Table 1 below (each, a “Metric”) satisfy the corresponding specifications set forth in the second column of Table 1 below (each, a “Standard”).

With each deliverable submitted for acceptance, Contractor shall provide evidence of compliance with the above requirement and shall sign-off on the statement of compliance. If the measurement under any Metric does not satisfy one or more of its corresponding Standards, then Customer shall have the right not to accept the non-compliant software and any other software that interoperates with or is affected by the non-compliant software, even if previously accepted, and Contractor promptly shall correct the software so that the software satisfies all applicable Standards and redeliver the corrected software.

Table 1: Required Metrics for Software Acceptance

	Metric
	Standard for Final Acceptance
	Threshold for Ongoing Notification

	Cyclomatic Complexity
	Less than or equal to 10
	More than 20

	Path Coverage
	70%
	Less than 40%

	Branch Coverage
	80%
	Less than 50%

	Line Coverage
	90%
	Less than 50%

	Boolean Coverage
	70%
	Less than 40%

	Aggregate project test coverage percentage
	70%
	Less than 50%

	Total modules with overrides
	Less than 2% of total project modules Customer has right to examine and disagree with overrides.
	More than 5%

	Total classes with overrides
	Less than 2% of total project classes. Customer has right to examine and disagree with overrides.
	More than 5%

6.3. Notice of Delayed Resolution

Contractor will keep Customer apprised of its progress toward resolution of any non-compliance. If Contractor is unable to promptly resolve a problem, then Contractor will immediately notify Customer. This notice will include (i) a reasonable explanation for the delay, and (ii) a good faith schedule and plan for correction. This notice will not constitute an excuse.

7. REMEDIES

7.1. [CUSTOMER SPECIFIC:]

7.2. [RESERVED: In the event that the Customer agrees to accept the software without full compliance, the Contractor will credit the Customer 5% of the contract value for each non-compliant Metric.]

8. TERMINATION

In the event that the Contractor is unable to achieve compliance with applicable Quality Levels by the date(s) required in the Development Agreement, then Customer shall have the right to terminate the Development Agreement and obtain a refund of any amounts previously paid by Customer. Unless and until such termination occurs, Contractor shall, at no additional cost or expense to Customer, continue to attempt to remedy any non-compliance with Quality Levels using the process described in Section 6 until the problem is corrected, including, if necessary, furnishing personnel to work on site at Customer’s facility.

5

